

EFFECT OF 10 11 PROTON BUNCH ON CAVITY

Lee Teng July 20, 1979

Cavity Parameters (p. 167 Design Report)

Peak Voltage $V_0 = 360 \text{ kV}$

$$V_0 = 360 \text{ kV}$$

Frequency

 $f = 53 \text{ MHz} (\omega = 53 \times 2 \pi \text{ MHz})$

Unloaded-Q

0 = 6500

Shunt Impedance

 $Z = 1 M\Omega$

With these assumed design parameters the cavity performance parameters are then

Cavity Power

$$P = \frac{v_0}{2Z} = 64.8 \text{ kW}$$

Stored Energy
$$W = Q_{\omega}^{P} = 1.265J$$

Time Constant
$$\tau = 2Q/\omega = 39 \mu sec$$

Band Width

$$\Delta f = f/Q = 8.15 \text{ kHz}$$

Gap Capacitance
$$C = \frac{2W}{V^2} = 19.5 \text{ pF} = \frac{Q}{\omega Z}$$

1. Accelerating 10^{11} proton-bunch (q = 1.6 x 10^{-8} Coul.) at $\emptyset_s = 46.8^0$ (75 GeV/sec)

Energy from Cavity per Passage

$$\delta W = qV_0 \sin \emptyset_{\dot{S}} = 0.0042J$$

- a. Much smaller than stored energy of 1.265J.
- b. Takes the cavity $Q_{\overline{M}}^{\underline{\delta W}}$ = 21.6 rad or 3.43 oscillations to replenish.

Loading is no problem. Can stand one 10¹¹ bunch every, say, 5 oscillations $(\frac{1113}{5} \sim 200 \text{ bunches})$.

Voltage Distortion

$$\delta V = \frac{q}{C} = 820V$$

Much smaller than $V_0 = 360 \text{ kV}$. If bunch is 2 nsec long, voltage distortion slope is $(\delta \dot{v}) = 410 \text{ V/nsec}$ average. $(\delta \dot{v})_{\text{peak}}$ may be double, say, 800 V/nsec. Normal rf voltage slope is $V_0\omega\cos\omega t = (120 \times 10^3 \text{ V/nsec}) \times \cos\phi_s$, so rf voltage slope reduction is negligible hence bucket shape distortion is Voltage distortion is no problem. negligible.

UPC 107

- 2
- II. Keeping it bunched on flattop is no problem. No beam loading ($\delta W=0$). Voltage slope 120,000 V/nsec (at $\phi_s=0$) is reduced by 800 V/nsec at max. Negligible!
- III. Numbers indicate that even for 10^{12} proton-bunches the voltage and slope distortions are tolerable, except it will take 10 times the time to replenish the energy. Therefore, \sim 20 bunches each 10^{12} protons, evenly distributed around the ring is 0K.
- IV. One 10^{11} bunch every oscillation ($\sim 10^{14}$ p/p) will need a very good feedback system to pump energy into the cavity at 3.43 times the "natural" rate.

LT:eg